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Abstract 
This work describes two algorithms for computing the 
angular rate and attitude in case of a gyro and a Star Tracker 
failure in the Microwave Anisotropy Probe (MAP) satellite, 
which was placed in the L2 parking point from where it 
collects data to determine the origin of the universe. The 
nature of the problem is described, two algorithms are 
suggested, an observability study is carried out and real 
MAP data are used to determine the merit of the algorithms. 
It is shown that one of the algorithms yields a good estimate 
of the rates but not of the attitude whereas the other 
algorithm yields a good estimate of the rate as well as two 
of the three attitude angles. The estimation of the third angle 
depends on the initial state estimate. There is a contradiction 
between this result and the outcome of the observability 
analysis. An explanation of this contradiction is given in the 
paper. Although this work treats a particular spacecraft, its 
conclusions are more general. 

INTRODUCTION 
The Microwave Anisotropy Probe (MAP) Satellite was 

launched at 15:46:46 EDT on June 30, 2001 aboard a Delta 
11-7425-10 launch vehicle. After three phasing loops MAP 
passed by a swingby point where it was injected by the 
moon's gravity towards the L2 point. On October 1, 2001, 
following a three month journey, MAP arrived safely at its 
permanent observing station near the L2 Lagrange Point, 1.5 
million km from Earth, a quasi-stable position a million 
miles from Earth in the direction opposite the Sun. 
MAP used two two-axis gyroscopes to measure its angular 
rate vector. One input axis of the first gyroscope was 
aligned along the body x-axis and the other input axis was 
- 
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aligned along the body z-axis. The input axes of the 
second gyro were aligned along the body y and z-axes. 
Therefore, if one gyro failed then the rate about two body 
axes is still measured; namely, about the z-axis and one of 
the other two. MAP also had two Digital Sun Sensors that 
measured one vector; namely, the direction to the Sun. In 
addition, the spacecraft also carried two Star Trackers. 
However, when MAP performed the phasing loops it 
passed through the Van-Allen radiation belts, where the 
star trackers were inoperative. 
The problem handled in this paper is as follows. Suppose 
that indeed one gyro failed and the star trackers were 
inactive when MAP passed through the Van-Allen belts. 
Was it still possible to reconstruct the full angular rate and 
the orientation of MAP with the one operating gyro and a 
measurement of the Sun direction? It should be noted that 
although this question concerns a particular mission, its 
implication is more general. 
We addressed this problem by defining two possible 
filtering models and performing a nonlinear observability 
analysis. Then we performed simulations of the Spacecraft 
motion and ran the suitable filters to verify the results of 
the analysis. In the next section we describe the angular 
rate at which the problem is examined. This section is 
followed by a description of the examined filters. In the I 

section that follows we present the observability analysis 
that was carried out. In the next section we present 
simulation test results and then, in the last section, we 
present our conclusions. 

Bodv Angular Kinematics 
During the critical part of the trajectory; that is, when 
MAP passed through the radiation belts the spacecraft 
was kept at an inertial hold where the angular rate was 
nominally zero. In this mode the spacecraft attitude 
control system acted as a regulator where the gyros 
nominally read no input. In order to examine our 
suggested filters under more stringent conditions we 
chose to examine the filters under non-zero nominal 
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angular rate profile. As a baseline rate profile we chose 
the MAP science collection rate profile at L2. At the L2 
observation station the angular motion of MAP consists of 
two rotations as described in Fig. 1. One rotation, at 360 
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degrees an hour, is about the anti-Sun line, and the other, 
at 0.464 W M ,  is about the satellite z-axis. The body z- 

1.00 rph 
I 

/ 

axis is tilted by 22.5 degrees with respect to the anti-Sun 
fine. The body angular rate and attitude definitions are 
presented in Fig. 2 in terms of three Euler angles. In order 
to describe the spacecraft motion and the associated 
measurements we define four coordinate systems. The 
first system is the Sun coordinate system (designated by 
sun). The center of this system is at the origin of the 
spacecraft coordinates, its z-axis points at the Sun 
direction and its x-axis, which is turning, is assumed to 
point at some arbitrary direction in space, which we 
define as zero y . A rotation by the angle - y about the 
z-axis yields a first interim coordinate system, which we 
denote by I .  A second rotation by the angle 6 about the 
y-axis of this interim coordinate system yields the second 
interim coordinates, which we denote by 2. Finally, a 
rotation by the angle about the z-axis of the latter 
system results in the body coordinates, which we denote 
by b. For sake of simplicity, only the body system z-axis 
is shown in Fig. 2. MAP rotates about two axes. One 
rotation, at the rate of - f , is about the Sun line, which 

we defined as the Z,,, axis, and the other, at the rate of q ,  
is about the body z-axis. Using Fig. (2) we obtain 

___----- 

MAP Body 

Fig. 1: The Geometry of the Angular Motion Components 
of the MAP Spacecraft. 

a, =ysinS.cosq  

1 cycbcq + sysq -sycbcq + cysq -s6cq 
sycq sycFsq + c y c ~  S F S ~  (2) 

-sys6 C6 

\I where s denotes the sine function and c the cosine. The 
YI corresponding quaternion can be extracted best when 

using the newly derived algorithm.' The angular rates and 
angles are as follows: 

i. = 1 rev/ hour = 1.27cI3600 radlsec 

y = @ + O r a d  = @ r a d  
and (3.4 

= 0.464 rpm = 0 . 4 6 4 . 2 ~  160 rad I sec 

and (3 .b) 
Fig. 2: Coordinate Systems Involved in the Description q = q t + O r a d  = i t  rad 

of the MAP Total Angular Velocity. 
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6 = 22.5' = 22.5. n 11 80 rad (3.C) 

Upon examination of the MAP trajectory, the Sun direction 
and thus the Sun coordinates can be considered stationary 
in inertial space relative to the rotation of MAP with respect 
to the Sun coordinates. Consequently, we may consider the 
rate components of Eq. (1) as inertial rates resolved in body 
coordinates. 

Preliminary Analvsis 
We wish to know the relationship between the sun sensor 
measurements and the angles y , 6 and q that determine 
MAP'S attitude. To do that we turn to Fig. 3 which depicts 
the orientation of the sun sensor boresight in body 
coordinates. The sun sensor reads the tangent of the angles 
a and p .  We wish to express the readings of these 
tangents as functions of the angles y , 6 and q defined in 

Fig. 2. To do that we define (Zson)b and (ZS,ln)s,ln. The 

column matrix (Zs,ln)b contains the components of the 

vector z,,,, when resolved in the body coordinates, and, 

similarly, the column matrix (Z,,, ),,,, contains the 

components of the vector z,,,, when resolved in the Sun 
coordinates. We denote the components of the former by 
a,, ay and a,. It is easy to see that the components of 

(Zsun)s,ln are 0, 0, and 1. Thus 

From the last three equations and Eq. (2) we obtain 

hence 
a, =-s6cq 
ay = s6sq 

a, = c6 
therefore 

a 

a, 

a Y  

a, 

tanp = 2 = -tan 6.cq 

tan CI = - = tan 6 sq 

Note that t ana  and tanp are independent of y .  An 
inspection of Fig. 2 reveals that this is an expected result. 
Since t ana  and tanp are measured quantities, the last 
two equations contain only two unknowns, therefore we 
can solve for the angles 6 and q . For this reason even if 
the measurements contain unbiased errors we can still 
find these two angles by proper filtration. In order to fully 
know the spacecraft attitude we need to know y too. If 
the gyros mounted on the Sun coordinates z-axis 
introduce no bias, then a proper integration of their 
measured outputs will yield y and thus we can obtain the 
spacecraft attitude from the measurements obtained from 
these gyros and the sun sensor. If the gyro measurements 
contain a bias then we ask ourselves whether the system 
is observable; that is, whether the Spacecraft angular 
dynamics (Euler) equation may add information with 
which we can still observe y and thus completely 
determine the attitude. To answer this question we have 
to design an estimator and examine the observability of 
the system used by the estimator. This is done next. 

THE FILTERS 
Filter I 

Dynamics Model 
In this estimator (filter) we convert the sun sensors 

measurements to a vector measurement, which is then 
connected to the quaternion of the spacecraft. The 
dynamics model of Filter I was developed in.' Using 

define the system dynamics as 

where [gx] is the cross product matrix of a general 

vector g, W, accounts for the inaccuracies in the 

modeling of the spacecraft angular dynamics, and wq 
accounts for modeling errors of the quaternion dynamics. 

Measurement Equations 
The measurements are the tangent of the angles a and 

p , measured by the sun sensor and shown in Fig. 3, and 
the z and either the x or they  component of the body rate 
measured by one of the spacecraft gyros. The measured 
quantities are contaminated by noise so they are not the 
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reference values but rather, a,, ,' p,, , a,,,, and either 

ax,,, or coy,,, , depending on which gyro failed. 

Sun Sensor Measurement 
Using the two measured angles we compute a unit vector 

in the assumed sun direction as follows ' 

Sun 
Line 

Sensor, 
Boresight tJ 

Fig. 3: Definition of the Sun Direction 

In reality tan p, and tan a, contain noise; however in the 

filter we approximate the b, measured vector as the true 
vector to the Sun and a simple additive zero mean white 
noise; that is, 

b, = b + V b  (12) 

where b is the nominal unit vector in the true direction to 
the sun. The logic behind this simplification is that if in tests 
the filter yields satisfying results then the approximation is 
justified. Let r denote the measured Sun-vector expressed 
in the reference coordinate system (this vector is taken from 
the almanac). The relationship between the two vectors is 
expressed by 

when the last expression is substituted into Eq. (14) we 
obtain 

then Eq. (1 8) can be written as 

where D is the direction cosine matrix that transforms 
vectors from the reference to the body coordinates. From 
the last two equations we obtain 

It is well known that D is the following function of the 
quaternion elements 

or 
r 7  

Eq. (21) is the measurement equation associated with the 
sun sensor measurement. 
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Gyro Measurement 
Let us assume that the gyro which measures rates along 

the x and I axes continues to operate. The x and z axes rate 
measurements can be written as 

where a, and a, are the true rates, and v,, and V,, 

are scalar zero-mean white-noise measurements. Define 
1 0 0  

0 I 1  
L - J  

then from the last two equations we obtain 

We denote the measurement vector by o), where, clearly, 

0, = [a,,, a,,,]. Similarly we denote the noise 

vector as by V, where V, = [ v , ~  vu,]. Obviously, if 

the other gyro is the one that is still operating, then the x 
component in Eqs. (22 - 24) has to be replaced by the y 
component. 

T 

T 

The Combined measurement 
Combining Eqs. (21) and (24) we obtain 

[ "-1 - - [ 03x3 Hb (ry ''1 [ 11 + [ '''1 (25) 
O m  O2x4 

This is the combined measurement model for simultaneous 
measurement of the operating two-axes gyro and the sun 
sensor. 

Filter I1 
Dynamics Model 
In this filter we make use of the kinematics rule governing 

(26.a) 

(26.b) 

the rate of change of the Sun vector. It is known that 

hence 
D r  = b + C O X  b 

b = [ b x ] ~ ~  + Dr  

As mentioned earlier, the vector r is known from the 
almanac, therefore r is known too. Consequently we can 
treat Dr as a deterministic forcing function. In our case r is 
the vector from the spacecraft to the Sun. For the MAP 
trajectory this vector changes very slowly. Therefore we can 
neglect the term in r and use 

b = [ b x ] ~  (26.c) 

L -1- - 

+ I  0 I 
L J L - 4  

The state vector in Eq. (27) includes the Sun vector b 
even though b is a measurement. Indeed, in order to 
formally compute the rate and attitude one can 
numerically differentiate the measured b, and b y ,  and 

use them in the following equations (which are the 
components of Eq. (26.c)) 

b, = o,b, - o,by 

by = W,b, - O,b, 

together with the gyro-measured a,, to solve for the two 

unknowns 0, and m y .  Then use these 0, and 0, and 

the measured 0, as 'measurements' in an estimator 
whose dynamics model consists of the first two matrix 
equations in Eq. (27). However, this method required 
numerical differentiation, which introduces noise. To 
avoid differentiation we apply the estimation approach.' 
The latter can be accomplished by adding Eq. (26.c) to 
Eq. (lo), the differential equations of the variables that we 
want to estimate, thus forming Eq. (27). At this point a 
Kalman filter can be utilized to estimate those variables. 

Measurement Equations 
The measurement equations of Filter I1 are quite simple. 

The vector measurement of Eq. (21) is replaced by the 
simple equation 

(29) 

Eq.(24) stays the same; therefore, the augmented 
measurement equation for Filter I1 becomes 

OBSERVABILITY TESTS 
Before carrying on an observability test it is necessary 

to specify the kind of filter that was used in this analysis. 
The filter that was used here is the PSELIKA (Pseudo- 
Linear Kalman) Filter.6 The idea on which this filter is 
based is as follows. Suppose that the non-linear dynamics 

Augmenting Eq. (26.c) with the dynamics of Filter I yields 
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and measurement equations of a non-linear system can be 
decomposed in the following way 

X = F(x)x + BU + w 
y = H(x)x + v 

(3 1 .a) 
(3 1 .b) 

If F(?) is close enough to F(x) and H(?) is close 

enough to H(x)(note that we do not assume that 2 is 
necessarily close to X) then instead of the unknown 
matrices F(x) and H(x) we can use respectively F(2) 
and H(%) which are known along the estimation process 
and apply the linear Kalman filter algorithm to the 
measurements using the models 

X = F(?)x + BU + w (3 1 .c) 
y = H(?)x + v (3 I .d) 

The observability analysis requires F(x) and H(x). The x 
for F(x) and H(x) was the simulation truth model state. The 
logic for this choice of x is as follows. If when using F(x) 
and H(x) in the analysis the latter indicates that the 
system is not observable under these favorable conditions 
then there is no sense in trying to estimate the state vector 
x of the system. If, on the other hand, the analysis 
indicates that the system is observable, then although 
observability and therefore estimability are not assured, it 
makes sense to design an estimator and attempt to estimate 
x . The observability of the system models used by the two 
filters was examined using the following analysis. 
Consider @ , the transition matrix, which corresponds to 
F, the dynamics matrix, of either Eq. ( IO)  or Eq. (27). This 
matrix transforms the system state vector at time t, , Xk , 

to x,+~ , the state at time t k + l .  If at a certain time-point, 
t,, the initial state, denoted by x0, can be computed, 

then, for our purposes, the system is observable. Adopting 
the common approach to proving complete observability of 
a discrete linear system, we express the first m 
measurements as follows 

where @, (xo )  = I ,  then the last equation can be written 
as 

Y = WX, (33.a) 

Y=[Y~ ~2 . . y m l  T (33.b) 

where 

and 

Note that in Filter 11, H is not a function of the state (see 
equations 23 and 30). That is, the measurement equation 
is linear from the start. If there are n independent rows in 
the right hand side matrix (the observability matrix) in Eq. 
(32) where n is also the number of states, then X, can be 
solved for and the state is observable. The observability 

Fiitcr 1 
8 

I 
I 

0 1 2 3 4 5 6 7 8  
Tunc [KC] 

Fig. 4: Rank Development of the Observability Matrix of 
Filter I .  

test of Filter I reveals that the rank of the observability 
matrix for this filter becomes 7 (see Fig. 4), and since the 
filter state is 7 too, the system is observable. It means that 
there is a good chance that Filter I can estimate both the 

mtcr II 

Fig. 5: Rank Development of the Observability Matrix of 
Filter 11. 
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missing angular rate component as well as the attitude of the 
spacecraft when one gyro fails. We note though that the 
measurement equation of Filter I is only pseudo-linear and 
not truly linear. This fact may cause a problem even though 
the observability test indicates that the state is completely 
observable. The observability matrix of Filter I1 becomes 6 
and stay at 6 (see Fig. 5) whereas the size of the state vector 
is 9. This disparity indicates that the system is not 
completely observable. It means that we cannot fully 
estimate the missing rate component and the attitude. 
However, maybe their estimated values are close enough to 
the truth. Therefore both filters had to be tested. Simulation 
results of the two filters are presented in the next section. 

SIMULATION TEST RESULTS 
Simulations were run for different initial conditions and 
noise levels. Plots that resulted from a typical run of Filter I 
are presented in Figs. 6 - 11. For this run the initial y angle 

0 20 40 60 80 100 120 140 160 180 200 
-> 

1 
0 20 40 60 80 100 I20 140 160 180 2W 

Tune [SCC] 

Fig. 6: The x-component of the angular velocity, its 
estimate, and its estimation error for Filter I. 

-32 2 1 I 
0 20 40 60 80 IO0 120 140 160 180 200 

runs [4 

Fig. 7: The y-component of the angular velocity, its 
estimate, and its estimation error for Filter I. 

0 20 10 60 SO 100 I20 140 160 IS0 200 
Tmir [src] 

Fig. 8: The z-component of the angular velocity, its 
estimate, and its estimation error.for Filter I. 

was 60 degrees, 6 was 35 degrees and q was 0. The 
initial estimates were zero for all three angles. The true 
Euler-angle rates were 2 .  (2x) / 3600 rad/sec for 7 ,  
zero for 6 and 0.928.(27~)/60 rad/sec for q .  
According to Eq. (I), using these initial rates and angles, 
the true initial angular rate components were as follows: 
a, = 0.002 rad/sec a, = 0 rad/sec and a, = 0.094 
rad/sec. The initial estimated values of the angular 
velocity were zero for all three components. The one- 
sigma gyro measurement noise was 0.01 deghec and that 
of the sun sensor was 0.25 degrees. In each figure we see 
the true state superimposed on the estimate of the state. 
Underneath this plot there is a plot of the estimation error. 
In this run y is estimated quite well, but this is not always 
the case. The observability of this angle is quite poor. 

100 
- True 

90 --- E a m t e d  

Fig. 9: The y angle, its estimate, and the estimation error 
for Filter I.  
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Time [set] 

Fig. 10: The 6 angle, its estimate, and the estimation error 
for Filter I. 

-O rnl 1 
u u l  I 

' 0  20 40 60 80 IO0 120 140 160 180 200 
rune [sec] 

Fig. 11: The angle, its estimate, and the estimation error 
for Filter I. 

Filter I1 was also run but, as expected from the observability 
test, the three attitude angles were not observable. The 
estimates of the angular rate components resemble those 
obtained using Filter I but the estimates of the three angles 
were quite poor as seen in Figs. 12-14. 

CONCLUSIONS 
In this paper we analyzed two algorithms for estimating the 
attitude and rate of the MAP spacecraft after one of its two 
two-degree of freedom and one of its vector-measuring 
devices fail. Both algorithms implement Kalman filters for 
estimating its attitude and rate. A special observability 
analysis that was carried out revealed that one of the filters, 
Filter I, was completely observable whereas the other filter, 
Filter 11, was not completely observable. It was confirmed 
through simulations, which used the MAP spacecraft 
attitude and rate profile at the L2 Lagrange point, that Filter 
I1 was indeed unable to estimate the attitude. However, it 

~ , , m m m m 
2 
6 
I 

O 7, 

0 20 40 60 SO 100 120 140 160 180 200 
-50 

Ihnc [le'] 

Fig. 12: The y angle, its estimate, and the estimation 
error for Filter 11. 

Tnie - 100 

SO --- Csmated , - 

' I  
. .  '"I ' ' ' 

A- I I --I 
0 20 40 60 80 100 120 140 160 180 2W 

20 

Time [wcl 

Fig. 13: The 6 angle, its estimate, and the estimation 
error for Filter 11. 

I L  i L. 
20 40 60 80 100 ix 140 IM 1x0 2w -50" 

Tunc 

-doL 
Fig. 14: The q angle, its estimate, and the estimation 

error for Filter 11. 
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was also found that, contrary to the results of the 
observability analysis, when using Filter I the estimation 
quality of one of the attitude angles depended on the initial 
errors. A possible explanation to this contradiction is based 
on the fact that the observability matrix that was used to 
examine the observability of the filter was state dependent. 
Therefore only when we ran the test using the correct state; 
namely, the nominal angular rate vector and Euler angles, 
was the system found to be observable. In reality, however, 
the existing state vector was the estimated state vector. 
Therefore as long as the initial estimate was close enough to 
the true state, the simulation conditions matched those of the 
analysis and the observability test results predicted well the 
performance of the filter. On the other hand, when the initial 
estimate of the state vector was far from the true vector the 
analysis was not valid anymore. The main conclusion of this 
analysis is that when only one vector-measuring sensor is 
active, MAP dynamics equations cannot assist in turning the 
system into a completely observable system. Therefore 
complete attitude estimation is impossible under the 
conditions described in the paper. 
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